Conceptual Learning with Interactive Applets is a project to build high-quality web-based applets and supporting resources for enhancing conceptual understanding in undergraduate mathematics and statistics. Our applets are built using GeoGebra.
The project is based in the University of Melbourne, School of Mathematics and Statistics, and funded by a University of Melbourne Learning & Teaching Initiatives grant.
- 
				
											Confidence Intervals for the Weibull distributionComparing the lengths of non-symetric CI’s with that of the symmetric CI of the same level of confidence. Select the level of confidence $(1-a)*100$ by chosing the value of $a$. Select the value of the shape parameter $k$ of the Weibull distribution. The symmetric CI has equal probability of the left and right tails. By […] 
- 
				
											Confidence Intervals of Minimal Length for the F DistributionWe minimise the lengths of confidence intervals of a given level of confidence by varying the tail probabilities ratio. Select the level of confidence $(1-a)*100$ by chosing the value of $a$. Select the two values of the degrees of freedom, $n$ for the numerator and $m$ for the denominator of the F-distribution. The symmetric CI […] 
- 
				
											Bivariate normal and regression linesVisualise how the regression lines E(Y|X) and E(X|Y) change when the values of the parameters of the given bivariate normal change. 
- 
				
											Bases and Coordinates in R2This applet demonstrates the concept of co-ordinate vectors in R^2. 
- 
				
											Visualising the Gram-Schmidt AlgorithmThis applet demonstrates the Gram-Schmidt algorithm performed in R^3. 
- 
				
											Visualising linear transformations in R2This applet shows the geometric effect of a linear transformation T: R^2 → R^2. 
- 
				
											Visualising linear transformations in R3This applet shows the geometric effect of a linear transformation T in R^3. 
- 
				
											Cylindrical Coordinates Visual (Engineering Maths)This applet helps visualise the surface generated by cylindrical coordinates using r,θ and z. Click and drag on the sliders on the left to adjust the ranges for r,θ and z. Geogebratube page for this applet 
- 
				
											Spherical Coordinates Visual (Engineering Maths)This applet visualises surfaces generated by spherical coordinates using r,θ and φ. Click and drag on the sliders on the left to change the values for r,θ and φ. Click and drag on the graph to change/rotate the view. Geogebratube page for this applet 
- 
				
											Solution of the heat equationThis applet shows a solution of the heat equation, a partial differential equation from MAST20029 Engineering Mathematics. 
- 
				
											Visualising the span of two vectorsThis applet visualises the span of two vectors in R3 using linear combinations. 
- 
				
											Vector equations of lines in R2This applet shows a line in R2 and the vector form of its equation. 
- 
				
											Vector equations of planes in R3This applet shows a plane in R3 and the vector form of its equation. 
- 
				
											Vector equations of lines in R3This applet shows a line in R3 and the vector form of its equation. 
- 
				
											Visualising row addition on a 3×3 matrixThis applet shows how the determinant is unaffected by the elementary row operation of addition of a scalar multiple of a row to another row. 
- 
				
											Visualising row addition on a 2×2 matrixThis applet shows how the determinant is unaffected by the elementary row operation of addition of a scalar multiple of a row to another row. 
- 
				
											Visualising row, column and solution spacesThis applet shows the row, column, and solution spaces of a 3×3 matrix M. 
- 
				
											Columns of a matrix and the rank-nullity theoremThis applet shows how the column space, solution space, rank and nullity of a matrix M change as you append additional columns. Initially the matrix M has a single column. You can add extra columns to M by editing the text boxes on the right of the applet, and clicking the ‘Append column’ button. The […] 
- 
				
											Exploring areas with hyperbolic and trigonometric functionsThis applet explores a geometric interpretation of the parameter t in the parameterisation of the standard hyperbola using cosh and sinh. 
- 
				
											Tangency: chords, tangents and velocity of a parametric curveThis applet explores the velocity vector of a parametric curve, and its relationship to the chord r(t+h)-r(t) and the difference quotient. 
- 
				
											Confidence intervals, hypothesis testing and p-valuesThis applet illustrates the connection between a confidence interval, a formal hypothesis test, and the p-value of a hypothesis test. 
- 
				
											Power of a hypothesis testThis applet gives a visualisation of the concept of statistical power, and helps illustrate the relationship between power, sample size, standard deviation and difference between the means. 
- 
				
											Partitioning of variability in regressionThis applet illustrates partitioning of variability into explained (fitted) and unexplained (residual) variability. 
- 
				
											Partitioning of variability in ANOVAThis applet illustrates the partitioning of variability into explained and unexplained variability, in the context of ANOVA. 
- 
				
											Linear transformations and eigenvectorsThis applet illustrates the effect of a linear transformation in R2 on the unit circle/unit disk, and the geometric meaning of eigenvectors, eigenvalues and determinant. 
- 
				
											Distribution of order statisticsThis applet displays the distribution for the order statististics of a sample of size n from an arbitrary population distribution. 
- 
				
											Maximum likelihood estimatorsThis applet shows the maximum likelihood estimator and (log) likelihood function for several statistical models. 
- 
				
											Convergence and continuity of a functionThis applet illustrates the ε-δ definitions of the limit and continuity of a function. It can be used to investigate (non-)convergence or (dis)continuity of real functions, including the Dirichlet everywhere discontinuous function and variants. 
- 
				
											Differentiability of a functionThis applet illustrates the definition of derivative as the limit of the gradient of a chord. 
- 
				
											Convergence of a sequenceThis applet illustrates the ε-M definition of convergence of a sequence. 
- 
				
											Riemann sums and partitionsThis applet illustrates upper and lower Riemann sums and refinement of partitions. 
- 
				
											Sequences and seriesThis applet shows the relationship between terms of a sequence and the partial sums of a series. It also allows exploration of some important sequences & series including geometric and harmonic sequences. 
- 
				
											Normal approximation to the binomial distributionThis applet explores the normal approximation to the binomial distribution. 
- 
				
											Inverse of a functionThis applet shows the construction of the inverse of a function, and can be used to explore whether the inverse is a function. 
- 
				
											Parametric curvesThis applet plots and traces a parametric curve, given as a vector function in R2. 
- 
				
											Two parametric curvesThis applet plots two parametric curves simultaneously. It can be used to explore whether two particles collide. 
- 
				
											Discrete and continuous distributionsThis applet explores the relationship between the pmf or density and the cumulative distribution function of a range of discrete and continuous probability distributions. 
- 
				
											Logistic population growthThis applet explores a logistic population growth model with no harvesting. The phase plot is shown alongside the plot of p vs t. 
- 
				
											Logistic population growth with harvestingThis applet explores a logistic population growth model with constant harvesting. 
- 
				
											Normal probability plot and CDFThis applet shows the relationship between a plot of an estimated empirical CDF and a normal probability plot. 
- 
				
											QQ plotsThis applet explores QQ-plots for a range of distributions. 
- 
				
											Model of a spring with drag and forcingThis applet simulates a spring acting under gravity, subject to drag and an external driving force. 
- 
				
											Random variablesThis applet illustrates the concept of independent identically distributed random variables. 
- 
				
											Vector projectionsThis applet aims to demonstrate visually the projection of a vector u onto a vector v. 
- 
				
											Central Limit Theorem and Law of Large NumbersThis applet illustrates how the distribution of the sample mean converges towards normality as sample size increases. 
- 
				
											Population genetics by FHW modelThis applet calculates the zygote and adult allele and genotype frequencies according to the Fisher-Haldane-Wright model of population genetics, and plots the results. 
- 
				
											Iterating a difference equationThis applet iterates a difference equation (also known as recurrence relation) and displays the resulting sequence both graphically and numerically. 
- 
				
											Cobwebbing a difference equationThis worksheet performs iteration and produces cobweb diagrams for a first-order difference equation (AKA recurrence relation, discrete dynamical system). 
- 
				
											Cobwebbing, linear approximation and stabilityThis applet shows a linear approximation to a non-linear difference equation close to an equilibrium, using cobwebbing. It can be used to investigate the accuracy of a linear approximation, or to motivate the linear stability criterion for equilibria of a first-order difference equation. 
- 
				
											Guess the correlationGuess the correlation of a sample of bivariate data drawn from a linear or non-linear population. 
- 
				
											Sampling from a bivariate populationRepeatedly sample from a bivariate population, and construct a histogram of sample regression line slope. 
- 
				
											Solution of the wave equationThis applet illustrates a solution of the wave equation, from the MAST20029 Engineering Mathematics lecture notes. 
- 
				
											Exploring an ODE with Euler methodThis applet displays the direction field and solutions for an ordinary differential equation (ODE), and calculates approximate solutions using Euler’s method. 
- 
				
											Continuity of a 2-branch piecewise defined functionThis applet investigates the continuity of a 2-branch piecewise-defined function. 
- 
				
											Continuity of a piecewise-defined functionThis applet investigates the continuity of a piecewise-defined function. 
- 
				
											Exploring an ODEThis applet displays the direction field and solutions for an ordinary differential equation (ODE). 
- 
				
											Understanding the chain ruleThis applet explores how the rate of change of a composite function y = f(g(x)) depends on the rates of change of both f and g.